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A sequence involving an intramolecular Diels-Alder reaction of a furan diene possessing an allenic amide 
dienophilic moiety, followed by radical induced annelation of the resultant cycloadduct, permits access to 
material possessing a functionalised morphinan skeleton. 

In an extension of our studies into synthetic applications of the intramolecular Diels - Alder reaction 

of furans (IMDAF),’ we have become interested in the subsequent annelation of the initial cycloadducts 

to furnish more complex multicyclic frameworks, such as that found in morphine (1)2 
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It was envisaged that an efficient approach to morphinan type structures would involve initial 

IMDAF using an allenic amide as the dienophilic moiety to construct the heterocyclic ring, followed by either 

anion or radical mediated 1,4- addition to the a$- unsaturated amide moiety formed in the resultant 

cycloadduct (Figure 1). 
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Figure 1 

In our choice of this approach we were greatly influenced by the elegant work of Kanematsu3 which 

has demonstrated the ready propensity of allenic dienophiles to undergo IMDAF at the terminal double bond. 

During the course of this work Hart4 communicated work based upon a similar protocol using an 
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intermolecular cycloaddition /radical cyclization sequence. In our system however, we were aware of 

additional potential difficulties, both in stereochemical control of the IMDAF, and in the subsequent annelation 

which requires construction of a quatemary centre.5 

To investigate the potential of such an approach, the benzylic Grignard reagent derived from 

2-bromobenzyl bromide was added to N-methyl 2-furylimine6 and the resulting amine (2) acylated with 

prop-2,3-dienoyl chloride’ to furnish the required IMDAF substrate (3) (Figure 2).8 On st.anding at room 

temperature, (3) slowly underwent cycloaddition, although the IMDAF was most conveniently carried out in 

refluxing toluene, when conversion was complete in less than 2 h. Analysis of the crude material by NMR 

showed the presence of single cycloadduct, the stereochemistry of which was initially tentatively assigned on 

the basis of coupling constants and n.0.e. difference studies to be that of the desired diastereoisomer (4). 

(2) (3) (4) 

Reagents and conditions: (i) 2-BrC6H5CHzMgBr, E$O, r.t., 54%; (ii) CH,=C=CHCOCl, EtsN, 
CHaCla, 40%; (iii) toluene, reflux, 2 h, quant. 

Figure 2 

Generation of the Iithio- derivative of (4), by reaction with n-butyl-lithium, resulted solely in 1,2- 

addition to the amide carbonyl to give the amino1 (5) (Figure 3), the structure of which was confirmed by 

X-ray crystallographic analysis.g This in turn permitted confirmation of the relative stereochemistry proposed 

for the IMDAF cycloadduct (4). The stereocontrol observed in the IMDAF can be rational&d by proposing 

that cycloaddition occurs via a conformation which places the 2bromobenzyl group in the sterically least 

demanding quasi- equatorial position. All attempts to induce 1,4- addition, by generating the lithio- species in 

the presence of copper (I) salts, failed. Homolytic cleavage of the C-Br bond of (4) using nBu$nH in the 

presence of a catalytic quantity of AIBN in refluxing toluene resulted in the formation of a complex mixture of 

products. 

Reagents and conditions: (i) n-BuLi, THF, -7PC, quant. 
Figure 3 

We reasoned that the unconjugated double bond of (4) was interfering with the radical mediated 

cyclisation. This double bond could be selectively hydrogenated using Wilkinson’s catalyst and the reduced 

material (6) submitted to the same radical generation conditions which had been applied to (4) (Figure 4). 
Gratifyingly, this resulted in rapid disappearance of the starting material and clean conversion to a mixture of 
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two isomeric products (cu. 2 : 3). Spectroscopic analysis of the purified materials permitted the minor, more 

polar product to be assigned the morphinan structure (7); with the less polar material being the regioisomeric 

product (8) resulting from radical addition to the less substituted position of the double bond.* The amide 
moiety of (7) which could be reduced (DIBAL, THF, -78T - r.t.) to furnish (9) possessing the desired amine 

bridge structure of the morphinans. 

(4) (6) 

Reagents and conditions: (i) (PhsP)$hCIz, Hz, MeOH/toluene, arrant; (ii) PhSnH, AIBN (cat.), C6H6, 

reflux, (7) 37% (8) 55%;(iii) DIBAL, THF, -78T - r.t., quant. 

Figure 4 

Structures (7) and (8) were confirmed by X- ray crystallographic analysis (Figure Q9 

x-ray stIucNIe of (7) Figure 5 x-ray stmcture of (8) 

In summary, this Communication illustrates the utility of our tandem IMDAF /radical closure 

protocol for the rapid construction of complex polycyclic frameworks. Studies on the optimisation of the yield 

of the desired material in the radical cyclisation step are being undertaken at present and further synthetic 

results will be reported in due course. 
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